Team Callisto

Principal Investigators

Name	Qualification	Institution
Vishal Singh	Aerospace Engineering	University of Petroleum and Energy Studies
Ravneet Kaur	Aerospace Engineering	University of Petroleum and Energy Studies
Suvin B. Nair	Aerospace Engineering	University of Petroleum and Energy Studies

Scientific Objective

A lunar dust accumulation analyzer which consists of two parts: a magnetic sensor, which will provide answers about the magnetic properties of lunar dust, and a set of solar cells to determine how fast dust accumulation takes place by calculating the net voltage drop from the cells. This experiment will provide information on the possible effects of lunar dust, an important consideration for the future of energy production.

Specifications

Dimensions: Φ62mm x 116 mm

Mass: 62 grams

Power: 3W

Operating Voltage: 5V

Operating Temperature: -40°C to +60°C

Storage Temperature: -65°C to +120°C

Data Interface: RS-485

Specimen: N/A

Mission Description

Using a current sensor and a voltage sensor, readings can be obtained from the solar cells and graphs can be plotted between time and current. As the module is being exposed to the harsh environment of the moon, dust accumulation starts occurring. As a result, an increase in net magnetization can be observed. With the use of a magnetic sensor, the change in magnetization can be plotted.

Mission Operations

The payload is located on the main deck, looking S-SW. The entire experiment will be conducted in multiple modes. Overall, the experiment is a passive one. And for the solar cells to be operable, the sun has to be incident on it, which is Day 8 to Day 11. Readouts are taken once every hour on Day 3 and Day 8 to 11 for magnetometer and solar cells respectively.

Days of Operation						
Day	Day	Day	Day	Day		
1	2	3	4	5		
Day	Day	Day	Day	Day	Legend	
6	7	8	9	10	Magnetometer Mode	
Day	Day	Day	Day	Day	Solar Mode	
11	12	13	14	15		

Heritage Experiments

Reference Mission Name	Reference Mission Specifics	Lab2Moon Mission Specifics
The effects of lunar dust accumulation on the performance of photovoltaic Arrays [C. Katzan, 1991]	Observes the effect of lunar dust on photovoltaic cells	Calculates rate of accumulation and magnetic flux density of lunar dust to model a sintering process. Hence, a wider range of applications
The Lunar Atmospheric Composition Experiment (LACE), Apollo Mission, NASA	Observes the composition of gases in the lunar atmosphere	Observes the dynamic nature of dust on the lunar surface, which was a tough problem during the Apollo Mission

Figure 2 Lunar Dust Accumulation on the Lunar surface, Data by LADEX, NASA